Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Pharmacol Rep ; 73(3): 712-727, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1195205

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes pulmonary injury or multiple-organ injury by various pathological pathways. Transforming growth factor-beta (TGF-ß) is a key factor that is released during SARS-CoV-2 infection. TGF-ß, by internalization of the epithelial sodium channel (ENaC), suppresses the anti-oxidant system, downregulates the cystic fibrosis transmembrane conductance regulator (CFTR), and activates the plasminogen activator inhibitor 1 (PAI-1) and nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-kB). These changes cause inflammation and lung injury along with coagulopathy. Moreover, reactive oxygen species play a significant role in lung injury, which levels up during SARS-CoV-2 infection. DRUG SUGGESTION: Pirfenidone is an anti-fibrotic drug with an anti-oxidant activity that can prevent lung injury during SARS-CoV-2 infection by blocking the maturation process of transforming growth factor-beta (TGF-ß) and enhancing the protective role of peroxisome proliferator-activated receptors (PPARs). Pirfenidone is a safe drug for patients with hypertension or diabetes and its side effect tolerated well. CONCLUSION: The drug as a theoretical perspective may be an effective and safe choice for suppressing the inflammatory response during COVID-19. The recommendation would be a combination of pirfenidone and N-acetylcysteine to achieve maximum benefit during SARS-CoV-2 treatment.


Subject(s)
COVID-19 Drug Treatment , COVID-19/metabolism , Inflammation/drug therapy , Lung Injury/metabolism , Pyridones/therapeutic use , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , COVID-19/virology , Humans , Inflammation/metabolism , Lung Injury/virology , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL